Key Features

- High flow filter elements are constructed of meltblown polypropylene filter media.
- Retention Ratings from 1 µm to 40 µm (absolute micron rating).
- 100% polypropylene construction provides wide chemical compatibility.
- Inside to outside flow captures all contaminants within the filter element.
- Elements can be easily disposed of through incineration.
- Sturdy outer caps and center core allow use in rigorous applications.
- Greater filtration surface area per cartridge which significantly reduces the number of cartridges to change-out and dispose of, saving time and the environment.

Performance Specifications

- **Retention Ratings:**
 1, 3, 4.5, 10, 20, 40 µm (absolute)
- **Maximum Differential Pressure:**
 50 psid (3.45 bar) @ ambient temperature
- **Recommended Changeout Differential Pressure:**
 35 psid (2.41 bar)
- **FDA Listed Materials:**
 All materials meet U.S. Food and Drug Administration requirements for food and beverage contact.

Product Specifications

- **Materials of Construction:**
 - Filler Media: Polypropylene
 - Support/Drainage: Polypropylene
 - Endcaps: Polypropylene
 - Center Core: Polypropylene
 - O-ring: Silicone, Buna N, Viton A, EPDM
- **Dimensions (nominal):**
 - Outside Diameter: 6” (15.2 cm)
 - Available Lengths: 20”, 40”, 60” (50.8, 101.6, 152.4 cm)

Toxicity:
All cartridge components meet USP-XXIII, Class VI toxicity criteria. They are safe for use in pharmaceutical applications.

Purity:
Trapper HF Series filter cartridges are free of surfactants, anti-static agents, binders, and adhesives.
Trapper® HF Series

High Flow Elements for Critical Process Applications

Typical HF Series Applications

- Pre and Final Filtration of Chemicals
- Refinery Processes - Pre and Final Filtration
- Process Water
- Oil and Gas Production
 - Seawater Injection
 - Well Injection Chemicals
- RO Pretreatment
- Amines
- Municipal Water Systems
- Pulp and Paper
- Electrolytic Fluids
- Metal Finishing/Plating Solutions

Typical Flow Rates / Pressure Drop by Micron Rating

<table>
<thead>
<tr>
<th>Micron Rating (µm absolute)</th>
<th>Initial Pressure Drop 20”/50.8 cm length (psid/gpm) / Bar (x100 = kPa)/lpm</th>
<th>Initial Pressure Drop 40”/102.0 cm length (psid/gpm) / Bar (x100 = kPa)</th>
<th>Initial Pressure Drop 60/152.0 cm length (psid/gpm) / Bar (x100 = kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0090/0.132</td>
<td>0.0049/0.72</td>
<td>0.004/0.059</td>
</tr>
<tr>
<td>4.5</td>
<td>0.0042/0.062</td>
<td>0.0022/0.032</td>
<td>0.0017/0.025</td>
</tr>
<tr>
<td>10</td>
<td>0.0035/0.051</td>
<td>0.0017/0.025</td>
<td>0.0010/0.015</td>
</tr>
<tr>
<td>20</td>
<td>0.0025/0.037</td>
<td>0.0013/0.019</td>
<td>0.0009/0.132</td>
</tr>
<tr>
<td>40</td>
<td>0.0010/0.015</td>
<td>0.0007/0.103</td>
<td>0.0005/0.007</td>
</tr>
</tbody>
</table>

(1) For optimum performance, Nowata recommends the following maximum flow rates per cartridge in water. Recommended flow rates would need to be adjusted for fluids other than water by the relative viscosity. Please contact your Nowata representative for additional information.

<table>
<thead>
<tr>
<th>Element Length</th>
<th>Recommended Flow Rate For Optimum Performance Per Filter Element (gpm/min) / (m3/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20"</td>
<td>88 / 20</td>
</tr>
<tr>
<td>40"</td>
<td>176 / 40</td>
</tr>
<tr>
<td>60"</td>
<td>220 / 50</td>
</tr>
</tbody>
</table>

Typical Trapper HF Model Number

<table>
<thead>
<tr>
<th>40 Nominal Cartridge Length (inch)</th>
<th>HF Cartridge Series</th>
<th>1 Absolute Micron Rating (µm)</th>
<th>S O-Ring/Gasket Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Trapper HF Series</td>
<td>1</td>
<td>S = Silicone</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>3</td>
<td>E = EPDM</td>
</tr>
<tr>
<td>60</td>
<td>Other Lengths Available on Request</td>
<td>4.5</td>
<td>V = Viton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>N = Buna-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>